Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
J Cancer Res Clin Oncol ; 150(4): 178, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580878

RESUMO

PURPOSE: The prognostic utility of MIB-1 labeling index (LI) in pediatric low-grade glioma (PLGG) has not yet conclusively been described. We assess the correlation of MIB-1 LI and tumor growth velocity (TGV), aiming to contribute to the understanding of clinical implications and the predictive value of MIB-1 LI as an indicator of proliferative activity and progression-free survival (PFS) in PLGG. METHODS: MIB-1 LI of a cohort of 172 nonependymal PLGGs were comprehensively characterized. Correlation to TGV, assessed by sequential MRI-based three-dimensional volumetry, and PFS was analyzed. RESULTS: Mean MIB-1 LI accounted for 2.7% (range: < 1-10) and showed a significant decrease to 1.5% at secondary surgery (p = .0013). A significant difference of MIB-1 LI in different histopathological types and a correlation to tumor volume at diagnosis could be shown. Linear regression analysis showed a correlation between MIB-1 LI and preoperative TGV (R2 = .55, p < .0001), while correlation to TGV remarkably decreased after incomplete resection (R2 = .08, p = .013). Log-rank test showed no association of MIB-1 LI and 5-year PFS after incomplete (MIB-1 LI > 1 vs ≤ 1%: 48 vs 46%, p = .73) and gross-total resection (MIB-1 LI > 1 vs ≤ 1%: 89 vs 95%, p = .75). CONCLUSION: These data confirm a correlation of MIB-1 LI and radiologically detectable TGV in PLGG for the first time. Compared with preoperative TGV, a crucially decreasing correlation of MIB-1 LI and TGV after surgery may result in limited prognostic capability of MIB-1 LI in PLGG.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Antígeno Ki-67 , Prognóstico , Estudos Retrospectivos
2.
NEJM Evid ; 3(1): EVIDoa2300235, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38320511

RESUMO

Apixaban versus Aspirin for Embolic StrokeIn a trial of 352 patients with embolic stroke of undetermined source, 5 mg of apixaban administered twice daily was compared with 100 mg of aspirin administered once daily for the prevention of recurrent ischemic strokes. At 12 months, 13.6% of patients given apixaban had new ischemic lesions on magnetic resonance imaging compared with 16.0% of patients given aspirin, and the rates of clinically relevant bleeding were also comparable.


Assuntos
AVC Embólico , Pirazóis , Piridonas , Acidente Vascular Cerebral , Humanos , Aspirina , Método Duplo-Cego , Acidente Vascular Cerebral/prevenção & controle
3.
Eur J Radiol ; 171: 111293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218066

RESUMO

BACKGROUND AND PURPOSE: To evaluate the feasibility of a multimodal approach involving dynamic contrast-enhanced (DCE) perfusion imaging and diffusion kurtosis imaging (DKI) in the preoperative imaging of brain tumors in a multicenter setting, and to evaluate the effect on diagnostic confidence and accuracy for tumor grade and type prediction. MATERIALS AND METHODS: One hundred and thirty-three patients with brain tumors were imaged in six hospitals with a standardized multimodal protocol. Standard imaging and six parameter maps derived from DCE and DKI sequences were reviewed off-site by two independent readers. Image quality and diagnostic confidence were evaluated in qualitative analyses. Quantitative analyses were performed to assess diagnostic accuracy and the performance of DKI and DCE parameters for tumor grade differentiation and molecular tumor type determination. RESULTS: Standardized acquisition of DCE and DKI maps was feasible with excellent image quality. Diagnostic confidence was significantly improved from 85 % to 96 % (p = 0.0005) by additional review of the DCE and DKI maps. The combination of mean kurtosis and CBV was particularly advantageous for differentiating low-grade and high-grade glioma, oligodendroglial vs. astrocytic, and IDH1/2 wild type vs. mutated tumors. CONCLUSION: A multimodal imaging approach with DCE and DKI improves diagnostic confidence and yields higher diagnostic accuracy for predicting tumor grade and type in adult-type glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Glioma/diagnóstico por imagem , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imagem de Tensor de Difusão , Perfusão , Imagem Multimodal , Imagem de Difusão por Ressonância Magnética/métodos
4.
Physiol Plant ; 175(6): e14106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148233

RESUMO

Acclimation is a multigenic trait by which plants adjust photosynthesis and metabolism to cope with a changing environment. Here, natural variations of photosynthetic efficiency and acclimation of the central carbohydrate metabolism were analyzed in response to low and elevated temperatures. For this, 18 natural accessions of Arabidopsis thaliana, originating from Cape Verde Islands and Europe, were grown at 22°C before being exposed to 4°C and 34°C for cold and heat acclimation, respectively. Absolute amounts of carbohydrates were quantified together with their subcellular distribution across plastids, cytosol and vacuole. Linear electron transport rates (ETRs) were determined together with the maximum quantum efficiency of photosystem II (Fv/Fm) for all growth conditions and under temperature fluctuation. Under elevated temperature, ETR residuals under increasing photosynthetic photon flux densities significantly correlated with the degree of temperature fluctuation at the original habitat of accessions, indicating a geographical east/west gradient of photosynthetic acclimation capacities. Plastidial sucrose concentrations positively correlated with maximal ETRs under fluctuating temperature, indicating a stabilizing role within the chloroplast. Our findings revealed specific subcellular carbohydrate distributions that contribute differentially to the photosynthetic efficiency of natural Arabidopsis thaliana accessions across a longitudinal gradient. This sheds light on the relevance of subcellular metabolic regulation for photosynthetic performance in a fluctuating environment and supports the physiological interpretation of naturally occurring genetic variation of temperature tolerance and acclimation.


Assuntos
Arabidopsis , Temperatura , Arabidopsis/metabolismo , Temperatura Baixa , Fotossíntese/fisiologia , Aclimatação/fisiologia
5.
Nervenarzt ; 94(12): 1087-1096, 2023 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-37848647

RESUMO

BACKGROUND: Nerve injuries are a frequent problem in routine clinical practice and require intensive interdisciplinary care. OBJECTIVE: The current status of imaging to confirm the diagnosis of nerve injuries is described. The role of high-resolution ultrasound and magnetic resonance imaging (MRI) in the diagnostics and follow-up of peripheral nerve injuries is elaborated. MATERIAL AND METHODS: Review of the current state of imaging to confirm the diagnosis of nerve injuries. RESULTS: Depending on the suspected site of damage, the primary domain of magnetic resonance (MR) imaging (MR neurography) is injuries in the region of the spine, nerve roots, brachial plexus and lumbar plexus, pelvis and proximal thigh. In contrast, in other peripheral nerve lesions of the extremities the advantages of high-resolution nerve ultrasound in a dynamic setting predominate. The MR neurography is indicated here, especially in the frequent bottleneck syndromes and only in very isolated and selected cases. CONCLUSION: In addition to a correct anatomical assignment, the timely decision for a possible intervention and the appropriate concomitant treatment are an important basis for a favorable prognosis of nerve injuries. Imaging techniques should therefore be used early in the diagnostics and follow-up controls of peripheral nerve injuries.


Assuntos
Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ultrassonografia , Síndrome
6.
J Plant Physiol ; 290: 154116, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839392

RESUMO

A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.


Assuntos
Arabidopsis , Interação Gene-Ambiente , Genótipo , Fenótipo , Produtos Agrícolas/genética , Arabidopsis/metabolismo
7.
Plant Physiol ; 193(3): 2141-2163, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37427783

RESUMO

Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frutose , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Transporte Biológico/genética , Arabidopsis/metabolismo , Carboidratos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
8.
Front Plant Sci ; 14: 1166511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324682

RESUMO

Roots are the hidden parts of plants, anchoring their above-ground counterparts in the soil. They are responsible for water and nutrient uptake and for interacting with biotic and abiotic factors in the soil. The root system architecture (RSA) and its plasticity are crucial for resource acquisition and consequently correlate with plant performance while being highly dependent on the surrounding environment, such as soil properties and therefore environmental conditions. Thus, especially for crop plants and regarding agricultural challenges, it is essential to perform molecular and phenotypic analyses of the root system under conditions as near as possible to nature (#asnearaspossibletonature). To prevent root illumination during experimental procedures, which would heavily affect root development, Dark-Root (D-Root) devices (DRDs) have been developed. In this article, we describe the construction and different applications of a sustainable, affordable, flexible, and easy to assemble open-hardware bench-top LEGO® DRD, the DRD-BIBLOX (Brick Black Box). The DRD-BIBLOX consists of one or more 3D-printed rhizoboxes, which can be filled with soil while still providing root visibility. The rhizoboxes sit in a scaffold of secondhand LEGO® bricks, which allows root development in the dark and non-invasive root tracking with an infrared (IR) camera and an IR light-emitting diode (LED) cluster. Proteomic analyses confirmed significant effects of root illumination on barley root and shoot proteomes. Additionally, we confirmed the significant effect of root illumination on barley root and shoot phenotypes. Our data therefore reinforces the importance of the application of field conditions in the lab and the value of our novel device, the DRD-BIBLOX. We further provide a DRD-BIBLOX application spectrum, spanning from investigating a variety of plant species and soil conditions and simulating different environmental conditions and stresses, to proteomic and phenotypic analyses, including early root tracking in the dark.

9.
Plant Physiol ; 193(2): 980-1000, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220420

RESUMO

Acclimation and adaptation of metabolism to a changing environment are key processes for plant survival and reproductive success. In the present study, 241 natural accessions of Arabidopsis (Arabidopsis thaliana) were grown under two different temperature regimes, 16 °C and 6 °C, and growth parameters were recorded, together with metabolite profiles, to investigate the natural genome × environment effects on metabolome variation. The plasticity of metabolism, which was captured by metabolic distance measures, varied considerably between accessions. Both relative growth rates and metabolic distances were predictable by the underlying natural genetic variation of accessions. Applying machine learning methods, climatic variables of the original growth habitats were tested for their predictive power of natural metabolic variation among accessions. We found specifically habitat temperature during the first quarter of the year to be the best predictor of the plasticity of primary metabolism, indicating habitat temperature as the causal driver of evolutionary cold adaptation processes. Analyses of epigenome- and genome-wide associations revealed accession-specific differential DNA-methylation levels as potentially linked to the metabolome and identified FUMARASE2 as strongly associated with cold adaptation in Arabidopsis accessions. These findings were supported by calculations of the biochemical Jacobian matrix based on variance and covariance of metabolomics data, which revealed that growth under low temperatures most substantially affects the accession-specific plasticity of fumarate and sugar metabolism. Our findings indicate that the plasticity of metabolic regulation is predictable from the genome and epigenome and driven evolutionarily by Arabidopsis growth habitats.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Temperatura Baixa , Temperatura , Clima , Metaboloma/genética , Proteínas de Arabidopsis/genética
10.
Nat Commun ; 14(1): 3023, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230969

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major catalyst in the conversion of carbon dioxide into organic compounds in photosynthetic organisms. However, its activity is impaired by binding of inhibitory sugars such as xylulose-1,5-bisphosphate (XuBP), which must be detached from the active sites by Rubisco activase. Here, we show that loss of two phosphatases in Arabidopsis thaliana has detrimental effects on plant growth and photosynthesis and that this effect could be reversed by introducing the XuBP phosphatase from Rhodobacter sphaeroides. Biochemical analyses revealed that the plant enzymes specifically dephosphorylate XuBP, thus allowing xylulose-5-phosphate to enter the Calvin-Benson-Bassham cycle. Our findings demonstrate the physiological importance of an ancient metabolite damage-repair system in degradation of by-products of Rubisco, and will impact efforts to optimize carbon fixation in photosynthetic organisms.


Assuntos
Fotossíntese , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Dióxido de Carbono/metabolismo
11.
J Biol Chem ; 299(6): 104741, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088133

RESUMO

Intracellular sugar compartmentation is critical in plant development and acclimation to challenging environmental conditions. Sugar transport proteins are present in plasma membranes and in membranes of organelles such as vacuoles, the Golgi apparatus, and plastids. However, there may exist other transport proteins with uncharacterized roles in sugar compartmentation. Here we report one such novel transporter of the Monosaccharide Transporter Family, the closest phylogenetic homolog of which is the chloroplast-localized glucose transporter pGlcT and that we therefore term plastidic glucose transporter 2 (pGlcT2). We show, using gene-complemented glucose uptake deficiency of an Escherichia coli ptsG/manXYZ mutant strain and biochemical characterization, that this protein specifically facilitates glucose transport, whereas other sugars do not serve as substrates. In addition, we demonstrate pGlcT2-GFP localized to the chloroplast envelope and that pGlcT2 is mainly produced in seedlings and in the rosette center of mature Arabidopsis plants. Therefore, in conjunction with molecular and metabolic data, we propose pGlcT2 acts as a glucose importer that can limit cytosolic glucose availability in developing pGlcT2-overexpressing seedlings. Finally, we show both overexpression and deletion of pGlcT2 resulted in impaired growth efficiency under long day and continuous light conditions, suggesting pGlcT2 contributes to a release of glucose derived from starch mobilization late in the light phase. Together, these data indicate the facilitator pGlcT2 changes the direction in which it transports glucose during plant development and suggest the activity of pGlcT2 must be controlled spatially and temporarily in order to prevent developmental defects during adaptation to periods of extended light.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Cloroplastos , Proteínas Facilitadoras de Transporte de Glucose , Aclimatação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Escherichia coli , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Luz , Filogenia
12.
Plant Commun ; 4(1): 100423, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35962545

RESUMO

Plants have evolved multiple strategies to cope with rapid changes in the environment. During high light (HL) acclimation, the biosynthesis of photoprotective flavonoids, such as anthocyanins, is induced. However, the exact nature of the signal and downstream factors for HL induction of flavonoid biosynthesis (FB) is still under debate. Here, we show that carbon fixation in chloroplasts, subsequent export of photosynthates by triose phosphate/phosphate translocator (TPT), and rapid increase in cellular sugar content permit the transcriptional and metabolic activation of anthocyanin biosynthesis during HL acclimation. In combination with genetic and physiological analysis, targeted and whole-transcriptome gene expression studies suggest that reactive oxygen species and phytohormones play only a minor role in rapid HL induction of the anthocyanin branch of FB. In addition to transcripts of FB, sugar-responsive genes showed delayed repression or induction in tpt-2 during HL treatment, and a significant overlap with transcripts regulated by SNF1-related protein kinase 1 (SnRK1) was observed, including a central transcription factor of FB. Analysis of mutants with increased and repressed SnRK1 activity suggests that sugar-induced inactivation of SnRK1 is required for HL-mediated activation of anthocyanin biosynthesis. Our study emphasizes the central role of chloroplasts as sensors for environmental changes as well as the vital function of sugar signaling in plant acclimation.


Assuntos
Antocianinas , Açúcares , Açúcares/metabolismo , Cloroplastos/metabolismo , Plantas/metabolismo , Aclimatação , Fosfatos/metabolismo , Trioses/metabolismo
13.
Plant Commun ; 4(1): 100511, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36575799

RESUMO

Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Antocianinas , Proteômica , Heme/metabolismo , Proteínas de Ligação a DNA/genética
14.
Int J Cancer ; 152(9): 1875-1883, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522830

RESUMO

In addition to surgical management, corticosteroids have proven to be beneficial in the management of acute symptoms related to CNS tumors, and have been widely used for many decades, with dexamethasone (DM) representing the most commonly used agent. However, lately published in vitro data possibly indicates a DM-induced suppression of oncogene-induced senescence (OIS) in a preclinical pediatric low-grade glioma (pLGG) model, which, alongside data associating perioperative DM treatment with reduced event-free survival in adult glioma, raises questions concerning the safety of DM treatment in pLGG. A total of 172 patients with pLGG were retrospectively analyzed concerning the impact of perioperative DM application on postoperative short- and long-term tumor growth velocity and progression-free survival (PFS). Three-dimensional volumetric analyses of sequential MRI follow-up examinations were used for assessment of tumor growth behavior. Mean follow-up period accounted for 60.1 months. Sixty-five patients (45%) were perioperatively treated with DM in commonly used doses. Five-year PFS accounted for 93% following gross-total resection (GTR) and 57% post incomplete resection (IR). Comparison of short- and long-term postoperative tumor growth rates in patients with vs without perioperative DM application showed no significant difference (short-term: 0.022 vs 0.023 cm3 /month, respectively; long-term: 0.019 vs 0.023 cm3 /month, respectively). Comparison of PFS post IR (5-year-PFS: 65% vs 55%, respectively; 10-year-PFS: 52% vs 53%, respectively) and GTR (5- and 10-years-PFS: 91% vs 92%, respectively) likewise showed similarity. This data emphasizes the safety of perioperative DM application in pLGG, adding further evidence for decision making and requested future guidelines.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Criança , Estudos Retrospectivos , Glioma/tratamento farmacológico , Glioma/cirurgia , Intervalo Livre de Progressão , Dexametasona/efeitos adversos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia
15.
Plant Cell Environ ; 46(2): 464-478, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36329607

RESUMO

Cold acclimation is a multigenic process by which many plant species increase their freezing tolerance. Stabilization of photosynthesis and carbohydrate metabolism plays a crucial role in cold acclimation. To study regulation of primary and secondary metabolism during cold acclimation of Arabidopsis thaliana, metabolic mutants with deficiencies in either starch or flavonoid metabolism were exposed to 4°C. Photosynthesis was determined together with amounts of carbohydrates, anthocyanins, organic acids and enzyme activities of the central carbohydrate metabolism. Starch deficiency was found to significantly delay soluble sugar accumulation during cold acclimation, while starch overaccumulation did not affect accumulation dynamics but resulted in lower total amounts of \sucrose and glucose. Anthocyanin amounts were lowered in both starch deficient and overaccumulating mutants. Vice versa, flavonoid deficiency did not result in a changed starch amount, which suggested a unidirectional signalling link between starch and flavonoid metabolism. Mathematical modelling of carbon metabolism indicated kinetics of sucrose biosynthesis to be limiting for carbon partitioning in leaf tissue during cold exposure. Together with cold-induced dynamics of citrate, fumarate and malate amounts, this provided evidence for a central role of sucrose phosphate synthase activity in carbon partitioning between biosynthetic and dissimilatory pathways which stabilizes photosynthesis and metabolism at low temperature.


Assuntos
Arabidopsis , Carbono , Carbono/metabolismo , Antocianinas/metabolismo , Aclimatação/fisiologia , Metabolismo dos Carboidratos , Arabidopsis/metabolismo , Temperatura Baixa , Plantas/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Folhas de Planta/metabolismo
16.
J Neurooncol ; 160(3): 567-576, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36319795

RESUMO

PURPOSE: Despite excellent long-term overall survival rates, pediatric low-grade gliomas (pLGG) show high variety of clinical behavior regarding progress or senescence post incomplete resection (IR). This study retrospectively analyzes tumor growth velocity (TGV) of pLGG before surgery and after IR to investigate the impact of surgical extent, tumor location and molecular BRAF status on postoperative residual tumor growth behavior. METHODS: Of a total of 172 patients with pLGG receiving surgical treatment, 107 underwent IR (66%). Fifty-three vs 94 patients could be included in the pre- and post-operative cohort, respectively, and were observed over a mean follow-up time of 40.2 vs 60.1 months. Sequential three-dimensional MRI-based tumor volumetry of a total of 407 MRI scans was performed to calculate pre- and postoperative TGV. RESULTS: Mean preoperative TGV of 0.264 cm3/month showed significant deceleration of tumor growth to 0.085 cm3/month, 0.024 cm3/month and -0.016 cm3/month after 1st, 2nd, and 3rd IR, respectively (p < 0.001). Results remained significant after excluding patients undergoing (neo)adjuvant treatment. Resection extent showed correlation with postoperative reduction of TGV (R = 0.97, p < 0.001). ROC analysis identified a residual cut-off tumor volume > 2.03 cm3 associated with a higher risk of progress post IR (sensitivity 78,6%, specificity 76.3%, AUC 0.88). Postoperative TGV of BRAF V600E-mutant LGG was significantly higher than of BRAF wild-type LGG (0.123 cm3/month vs. 0.016 cm3/month, p = 0.047). CONCLUSION: This data suggests that extensive surgical resection may impact pediatric LGG growth kinetics post incomplete resection by inducing a significant deceleration of tumor growth. BRAF-V600E mutation may be a risk factor for higher postoperative TGV.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/cirurgia , Estudos de Coortes , Neoplasia Residual/genética , Mutação
17.
Cogn Res Princ Implic ; 7(1): 99, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417030

RESUMO

Radiologists often need only a glance to grasp the essence of complex medical images. Here, we use paradigms and manipulations from perceptual learning and expertise fields to elicit mechanisms and limits of holistic processing in radiological expertise. In the first experiment, radiologists were significantly better at categorizing thorax X-rays when they were presented for 200 ms in an upright orientation than when they were presented upside-down. Medical students, in contrast, were guessing in both situations. When the presentation time was increased to 500 ms, allowing for a couple more glances, the radiologists improved their performance on the upright stimuli, but remained at the same level on the inverted presentation. The second experiment circumvented the holistic processing by immediately cueing a tissue within the X-rays, which may or may not contain a nodule. Radiologists were again better than medical students at recognizing whether the cued tissue was a nodule, but this time neither the inverted presentation nor additional time affected their performance. Our study demonstrates that holistic processing is most likely a continuous recurring process which is just as susceptible to the inversion effect as in other expertise domains. More importantly, our study also indicates that holistic-like processing readily occurs in complex stimuli (e.g., whole thorax X-rays) but is more difficult to find in uniform single parts of such stimuli (e.g., nodules).


Assuntos
Radiologistas , Radiologia , Humanos , Raios X , Radiografia , Tórax/diagnóstico por imagem
18.
Neuroimage Clin ; 36: 103213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36270162

RESUMO

Spinal diffusion tensor imaging (sDTI) is still a challenging technique for selectively evaluating anatomical areas like the pyramidal tracts (PT), dorsal columns (DC), and anterior horns (AH) in clinical routine and for reliably quantifying white matter anisotropy and diffusivity. In neurodegenerative diseases, the value of sDTI is promising but not yet well understood. The objective of this prospective, single-center study was to evaluate the long fiber tract degeneration within the spinal cord in normal aging (n = 125) and to prove its applicability in pathologic conditions as in patients with molecular genetically confirmed hereditary spastic paraplegias (HSP; n = 40), a prototypical disease of the first motor neuron and in some genetic variants with affection of the dorsal columns. An optimized monopolar Stejskal-Tanner sequence for high-resolution, axial sDTI of the cervical spinal cord at 3.0 T with advanced standardized evaluation methods was developed for a robust DTI value estimation of PT, DC, and AH in both groups. After sDTI measurement at C2, an automatic motion correction and an advanced semi-automatic ROI-based, standardized evaluation of white matter anisotropy and diffusivity was performed to obtain regional diffusivity measures for PT, DC, and AH. Reliable and stable sDTI values were acquired in a healthy population without significant decline between age 20 and 65. Reference values for PT, DC, and AH for fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were established. In HSP patients, the decline of the long spinal fiber tracts could be demonstrated by diffusivity abnormalities in the pyramidal tracts with significantly reduced PTFA (p < 0.001), elevated PTRD (p = 0.002) and reduced PTMD (p = 0.003) compared to healthy controls. Furthermore, FA was significantly reduced in DCFA (p < 0.001) with no differences in AH. In a genetically homogeneous subgroup of SPG4 patients (n = 12) with affection of the dorsal columns, DCRD significantly correlated with the overall disease severity as measured by the Spastic Paraplegia Rating Scale (SPRS) (r = - 0.713, p = 0.009). With the most extensive sDTI study in vivo to date, we showed that axial sDTI combined with motion correction and advanced data post-processing strategies enables robust measurements and is ready to use, allowing recognition and quantification of disease- and age-related changes of the PT, DC, and AH. These results may also encourage the usage of sDTI in other neurodegenerative diseases with spinal cord involvement to explore its capability as selective biomarkers.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Animais , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Imagem de Tensor de Difusão/métodos , Estudos Prospectivos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Anisotropia , Tratos Piramidais/diagnóstico por imagem
20.
Commun Biol ; 5(1): 164, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210545

RESUMO

Quantification of system dynamics is a central aim of mathematical modelling in biology. Defining experimentally supported functional relationships between molecular entities by mathematical terms enables the application of computational routines to simulate and analyse the underlying molecular system. In many fields of natural sciences and engineering, trigonometric functions are applied to describe oscillatory processes. As biochemical oscillations occur in many aspects of biochemistry and biophysics, Fourier analysis of metabolic functions promises to quantify, describe and analyse metabolism and its reaction towards environmental fluctuations. Here, Fourier polynomials were developed from experimental time-series data and combined with block diagram simulation of plant metabolism to study heat shock response of photosynthetic CO2 assimilation and carbohydrate metabolism in Arabidopsis thaliana. Simulations predicted a stabilising effect of reduced sucrose biosynthesis capacity and increased capacity of starch biosynthesis on carbon assimilation under transient heat stress. Model predictions were experimentally validated by quantifying plant growth under such stress conditions. In conclusion, this suggests that Fourier polynomials represent a predictive mathematical approach to study dynamic plant-environment interactions.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Folhas de Planta , Sacarose/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...